

Robust Multivariable Flutter Suppression for the Benchmark Active Control Technology (BACT) Wind-Tunnel Model

Martin R. Waszak

Langley Research Center Dynamics and Control Branch

> LaRC Technical Forum January 15, 1996

Outline

- BACT Overview
 - Program
 - Wind-Tunnel Model
- Design Model
- Control Design and Test
 - Flutter Suppression with Spoilers
 - Robust Multivariable Designs
- Controller Performance Evaluation (CPE)
- Concluding Remarks

BACT Program Overview

Benchmark Aeroelastic Models Program

- study physics of aeroelastic phenomena
 - » classical transonic flutter "bucket"
 - » shock induced instabilities
 - » dynamic vortex-structure interaction
- data to validate steady and unsteady aero codes
- active control of aeroelastic systems

Benchmark Active Control Technology (BACT)

- high quality unsteady aero data near flutter
- active flutter suppression
 - » innovative control concepts spoilers and multiple effectors
 - » innovative design methods H , μ-synthesis, neural nets
- validate on-line controller performance evaluation tool

BACT Project Team

- Diverse Interdisciplinary Team
 - SD, FDCD, Guest Investigators (LaRC, ARC, MDA, Orbital Research)
 - Aerodynamics, Aeroelasticity, Dynamics and Control, Fabrication and Calibration, Parameter Identification, Information Systems
- Core Team
 - Rob Scott (Team Leader)
 - Robert Bennett
 - Sheri Hoadley
 - Robert Sleeper
 - Marty Waszak
 - Carol Wieseman

BACT System Overview

- Pitch and Plunge Apparatus (PAPA)
 - 2-DOF: pitch and plunge
 - 5-6 deg max. rotation
 - 1.5 inch max. deflection
- Wind-Tunnel Model
 - rigid NACA 0012 airfoil
 - -AR = 2 (c = 16 in., b = 32 in.)
- Control Surfaces
 - span = 0.3b, centered at 0.6b
 - upper and lower spoilers
 - \Rightarrow chord = 0.15c
 - » 45 deg max. deflection
 - trailing edge flap surface
 - \rightarrow chord = 0.25c
 - » ±15 deg max. deflection
 - hydraulic actuators

- Instrumentation
 - 4 accelerometers in corners of wing
 - pitch angle sensors
 - 70 pressure transducers
 - » 58 @ 0.6b (incl. control surfaces)
 - » 17 @ 0.4b
 - add'l transducers on splitter plate
 - accels and strain gauges on PAPA

Langley Research Center
Flight Dynamics and Control Division

BACT Project Chronology

Flight Dynamics and Control Division

	Tunnel Entry	Data Collected	Key Outcome
	October 1993	Steady Loads & Pressures	Control Design Model
		 Unsteady Loads & Pressures 	
-		 Flutter Boundary 	
		 Frequency Responses 	
	January	 SISO Flutter Suppression 	 Flutter Suppression with Spoilers
	1995	 SISO CPE Validation 	
		 Neural Network Gain Scheduler 	 Benefit of Multivariable Control
		 Adaptive Predictive Controller 	
		Turbulence Response	Validated SISO CPE
	February 1996		 MIMO Flutter Suppression
/			 Validated MIMO CPE
Lang	gley Researcl	h Center	

Modeling for Flutter Suppression

Model elements

- structural dynamics
- steady and unsteady aerodynamics (including control effects)
- turbulence effects
- actuators, sensors, controller effects

Accurately characterize dynamic response

- over flutter frequency range
- wide range of Mach and dynamic pressure
- due to spoilers (not possible with "standard" modeling method)
- characterize effects of key parameter variations
 - » sensitivity analysis
 - » uncertainty models

Modeling Approach

- Idealized structure
 - 2-DOF: pitch and plunge
 - linear
- Aerodynamics
 - linear
 - no lag terms, ω c/2U₀ = 0.044

$$\alpha(t) \quad \theta_T + \theta(t) + \frac{\dot{h}(t)}{U_0} + \frac{\ell(x)\dot{\theta}(t)}{U_0} - \frac{w_g(t)}{U_0}$$

- Lagrange's equations
- Principle of virtual work
- Experimental data in numerical model

M

X(+)

Langley Research Center
Flight Dynamics and Control Division

Model Accuracy - Frequency Response

- Subcritical Condition: M=0.77, q=125 psf
- Trailing edge inboard acceleration (g's)

--- experiment --- model ---- ISAC

Upper Spoiler Trailing Edge Flap 0.3 Mag Mag (g/deg) $(g/deg)_{0.1}$ 10 12 8 10 12 4 Frequency (Hz) Frequency (Hz) Phase 100 100 **Phase** (deg) (deg) -100 -100 -200<u>–</u> -200 L 10 12 2 10 4 6 12 Frequency (Hz) Frequency (Hz)

Modeling Summary

- Complete simulation model for control system design
 - Accuracy demonstrated
 - Implemented in MATLAB™/SIMULINK™
 - Fully Documented
- Used in design of several control laws
 - Classical
 - H and μ-Synthesis
 - Generalized Predictive Control
 - Neural Net Control
- Multiple Internal and External Customers
 - Dynamics and Control Branch, Aeroelasticity Branch
 - McDonnell-Douglas Aerospace
 - VPI, AFIT
 - U of Minnesota, Duke, ODU, U of Missouri, U of Naples

Flutter Suppression Control Laws

Design Objectives

- Stability Over Entire Operating Range
- Maintain Stability Subject to Modeling Errors
- Acceptable Control Activity

Traditionally Designed SISO Controllers

- Demonstrate Flutter Suppression Using Spoilers
- Develop Performance Specifications
- Coupled SISO Controllers

Robust MIMO Controllers

- Demonstrate Multivariable Flutter Suppression
- Evaluate EnhancedRobustness Properties

SISO Controller Summary

- Stabilized transonic flutter instability
- Operated over wide range of conditions

Closed-Loop Test Points

SISO Controller Performance Summary

- Reduced acceleration levels over entire operating range
 - Gust Load Alleviation for open-loop stable conditions
 - Flutter Suppression when open-loop unstable

RMS Acceleration Open- and Closed-Loop

Enhanced performance with coupled controllers

MIMO Controller Design Methods

Robustness

- Maintain Stability and Performance Subject to Model Variation
- Variations Include
 - » Operating Condition
 - » Model Error/Uncertainty

H Control

- Robust Stability
- Nominal Performance

µ-Synthesis

- Robust Stability
- Robust Performance
- Structured Uncertainty

Basis for MIMO Design Methods

- Stability margins characterized by generalized Nyquist diagram
- Uncertainty characterized by "fuzziness" of Nyquist contour
- Select controller to maximize distance from critical point to Nyquist contour
- Satisfy performance constraints

MIMO Controller Summary

- Nominal performance similar for all MIMO controllers
 - similar performance objectives
 - actuator deadzone

Controller Performance Comparison (Dynamics Pressure = 185 psf)

- Better robustness for µ-Synthesis controllers
 - larger stability margins than classical designs
 - more uniform margins(i.e., at plant input and output)

Langley Research Center
Flight Dynamics and Control Division

Controller Performance Evaluation

- On-line, Near Real Time Stability Assessment
 - Open-Loop: Determines if controller will destabilize system
 - Closed-Loop: Determines stability margin for controller
- Greatly Enhances Safety of Active Control Testing
 - Less chance of damage to model and wind-tunnel
 - Less chance of equipment failure due to "heavy wear"
- Enhances Productivity
 - Less time required to verify controller performance
 - Reduces stress and anxiety
- Validation Process
 - Design controllers to vary gain and phase
 - Compare stability margins while varying gain & phase in various channels

Langley Research Center
Flight Dynamics and Control Division

CPE Tool Validation

- Demonstrated Accuracy of SISO Margins
- Demonstrated Convervatism of MIMO Margins

CPE Enhances Safety and Productivity

Key Accomplishments

Technical Accomplishments

- Spoilers for Flutter Suppression
 - Representative of "Innovative Control Effectors"
 - Additional Design Freedom
 - Enhanced Redundancy
- Robust Multivariable Flutter Suppression
 - One of the First Demonstrations
 - Enhanced Performance (over SISO designs)
 - Enhanced Robustness
 - Identified Deficiencies in Methods
 - » Inability to Accomodate Practical Needs (e.g. Washout)
 - » Sensitivity to Performance Specifications
 - » Numerical Algorithms and Convergence Issues
- Validated CPE Tool for Active Control Testing
 - Enhanced Productivity
 - Reduced Risk of Damage to Model and/or Tunnel

Additional Accomplishments

- Fully Documented Simulation Model
 - highly valued for research and education uses
 - » LaRC, ARC
 - » McDonnell-Douglas Aerospace
 - » VPI, AFIT
 - » U of Minnesota, Duke, ODU, U of Missouri, U of Naples
 - unique capability of LaRC
- Benchmark Active Control Database
 - Basis for Comparing Other Innovative Control Designs
 - Basis for Improving Analytical Modeling Methods
 (e.g., System Identification of Uncertainty Models)
- Additional Experience/Confidence with Active Flutter Control
- Safe and Reliable Test Facility
 - multiple recovery mechanisms
 (controller reversion, "snubber," and by-pass valves)
 - built and maintained in-house

Concluding Remarks

- Effective Leveraging of LaRC's Strengths
 - Unique combination of LaRC Resources
 - » Multiple Disciplines: Structures, Aerodynamics, and Controls
 - » TDT Wind-Tunnel and Fabrication Facilities
 - Aeronautics Base Funding
 - » Less rigid schedule (decision points rather than milestones)
 - » Freedom to exploit serendipity
 - » Less risk averse environment
 - Diverse set of products
- Example of Fundamental/Radical Technology Development
 - Combines emerging technologies with unique resources/capabilities
 - Exhibits significant risk but with large potential technical benefit
 - Establishes a basis for more focused development
 - Enhances an already strong competitive position
 - Addresses an area of potentially high future demand

